Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 45, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175238

RESUMO

Veillonella spp. are Gram-negative opportunistic pathogens present in the respiratory, digestive, and reproductive tracts of mammals. An abnormal increase in Veillonella relative abundance in the body is closely associated with periodontitis, inflammatory bowel disease, urinary tract infections, and many other diseases. We designed a pair of primers and a probe based on the 16S rRNA gene sequences of Veillonella and conducted real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) to quantify the abundance of Veillonella in fecal samples. These two methods were tested for specificity and sensitivity using simulated clinical samples. The sensitivity of qPCR was 100 copies/µL, allowing for the accurate detection of a wide range of Veillonella concentrations from 103 to 108 CFU/mL. The sensitivity of ddPCR was 11.3 copies/µL, only allowing for the accurate detection of Veillonella concentrations from 101 to 104 CFU/mL because of the limited number of droplets generated by ddPCR. ddPCR is therefore more suitable for the detection of low-abundance Veillonella samples. To characterize the validity of the assay system, clinical samples from children with inflammatory bowel disease were collected and analyzed, and the results were verified using isolation methods. We conclude that molecular assays targeting the 16S rRNA gene provides an important tool for the rapid diagnosis of chronic and infectious diseases caused by Veillonella and also supports the isolation and identification of Veillonella for research purposes. KEY POINTS: • With suitable primer sets, the qPCR has a wider detection range than ddPCR. • ddPCR is suitable for the detection of low-abundance samples. • Methods successfully guided the isolation of Veillonella in clinical sample.


Assuntos
Doenças Inflamatórias Intestinais , Veillonella , Criança , Humanos , Bioensaio , Doenças Inflamatórias Intestinais/diagnóstico , Mamíferos , Reação em Cadeia da Polimerase em Tempo Real , RNA Ribossômico 16S/genética
2.
Anal Chem ; 96(5): 1913-1921, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266028

RESUMO

2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.


Assuntos
Citocromos c , Molibdênio , Humanos , Células HeLa , Oxirredução
3.
Microbiol Spectr ; : e0117023, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732783

RESUMO

Klebsiella pneumoniae is a well-known human nosocomial pathogen with an arsenal of virulence factors, including capsular polysaccharides (CPS), fimbriae, flagella, and lipopolysaccharides (LPS). Our previous study found that alcohol acted as an essential virulence factor for high-alcohol-producing K. pneumoniae (HiAlc Kpn). Integration host factor (IHF) is a nucleoid-associated protein that functions as a global virulence regulator in Escherichia coli. However, the regulatory role of IHF in K. pneumoniae remains unknown. In the present study, we found that deletion of ihfA or ihfB resulted in a slight defect in bacterial growth, a severe absence of biofilm formation and cytotoxicity, and a significant reduction in alcohol production. RNA sequencing differential gene expression analysis showed that compared with the wild-type control, the expression of many virulence factor genes was downregulated in ΔihfA and ΔihfB strains, such as those related to CPS (rcsA, galF, wzi, and iscR), LPS (rfbABCD), type I and type III fimbriae (fim and mrk operon), cellulose (bcs operon), iron transporter (feoABC, fhuA, fhuF, tonB, exbB, and exbD), quorum sensing (lsr operon and sdiA), type II secretion system (T2SS) and type VI secretion system (T6SS) (tssG, hcp, and gspE). Of these virulence factors, CPS, LPS, fimbriae, and cellulose are involved in biofilm formation. In addition, IHF could affect the alcohol production by regulating genes related to glucose intake (ptsG), pyruvate formate-lyase, alcohol dehydrogenase, and the tricarboxylic acid (TCA) cycle. Our data provided new insights into the importance of IHF in regulating the virulence of HiAlc Kpn. IMPORTANCE Klebsiella pneumoniae is a well-known human nosocomial pathogen that causes various infectious diseases, including urinary tract infections, hospital-acquired pneumonia, bacteremia, and liver abscesses. Our previous studies demonstrated that HiAlc Kpn mediated the development of nonalcoholic fatty liver disease by producing excess endogenous alcohol in vivo. However, the regulators regulating the expression of genes related to metabolism, biofilm formation, and virulence of HiAlc Kpn remain unclear. In this study, the regulator IHF was found to positively regulate biofilm formation and many virulence factors including CPS, LPS, type I and type III fimbriae, cellulose, iron transporter, AI-2 quorum sensing, T2SS, and T6SS in HiAlc Kpn. Furthermore, IHF positively regulated alcohol production in HiAlc Kpn. Our results suggested that IHF could be a potential drug target for treating various infectious diseases caused by K. pneumoniae. Hence, the regulation of different virulence factors by IHF in K. pneumoniae requires further investigation.

4.
J Biomed Sci ; 30(1): 75, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653407

RESUMO

BACKGROUND: Klebsiella aerogenes can cause ventilator-associated pneumonia by forming biofilms, and it is frequently associated with multidrug resistance. Phages are good antibiotic alternatives with unique advantages. There has been a lack of phage therapeutic explorations, kinetic studies, and interaction mechanism research targeting K. aerogenes. METHODS: Plaque assay, transmission electron microscopy and whole-genome sequencing were used to determine the biology, morphology, and genomic characteristics of the phage. A mouse pneumonia model was constructed by intratracheal/endobronchial delivery of K. aerogenes to assess the therapeutic effect of phage in vivo. Bioinformatics analysis and a prokaryotic protein expression system were used to predict and identify a novel capsule depolymerase. Confocal laser scanning microscopy, Galleria mellonella larvae infection models and other experiments were performed to clarify the function of the capsule depolymerase. RESULTS: A novel lytic phage (pK4-26) was isolated from hospital sewage. It was typical of the Podoviridae family and exhibited serotype specificity, high lytic activity, and high environmental adaptability. The whole genome is 40,234 bp in length and contains 49 coding domain sequences. Genomic data show that the phage does not carry antibiotic resistance, virulence, or lysogenic genes. The phage effectively lysed K. aerogenes in vivo, reducing mortality and alleviating pneumonia without promoting obvious side effects. A novel phage-derived depolymerase was predicted and proven to be able to digest the capsule, remove biofilms, reduce bacterial virulence, and sensitize the bacteria to serum killing. CONCLUSIONS: The phage pK4-26 is a good antibiotic alternative and can effectively relieve pneumonia caused by multidrug-resistant K. aerogenes. It carries a depolymerase that removes biofilms, reduces virulence, and improves intrinsic immune sensitivity.


Assuntos
Bacteriófagos , Enterobacter aerogenes , Pneumonia , Animais , Camundongos , Bacteriófagos/genética , Cinética , Antibacterianos , Modelos Animais de Doenças
5.
Front Microbiol ; 14: 1177273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426001

RESUMO

Mycoplasma pneumoniae is a common causative pathogen of community-acquired pneumonia. An accurate and sensitive detection method is important for evaluating disease severity and treatment efficacy. Digital droplet PCR (ddPCR) is a competent method enabling the absolute quantification of DNA copy number with high precision and sensitivity. We established ddPCR for M. pneumoniae detection, using clinical specimens for validation, and this showed excellent specificity for M. pneumoniae. The limit of detection of ddPCR was 2.9 copies/reaction, while that for real-time PCR was 10.8 copies/reaction. In total, 178 clinical samples were used to evaluate the ddPCR assay, which correctly identified and differentiated 80 positive samples, whereas the real-time PCR tested 79 samples as positive. One sample that tested negative in real-time PCR was positive in ddPCR, with a bacterial load of three copies/test. For samples that tested positive in both methods, the cycle threshold of real-time PCR was highly correlated with the copy number of ddPCR. Bacterial loads in patients with severe M. pneumoniae pneumonia were significantly higher than those in patients with general M. pneumoniae pneumonia. The ddPCR showed that bacterial loads were significantly decreased after macrolide treatment, which could have reflected the treatment efficacy. The proposed ddPCR assay was sensitive and specific for the detection of M. pneumoniae. Quantitative monitoring of bacterial load in clinical samples could help clinicians to evaluate treatment efficacy.

6.
Microbiol Spectr ; 11(4): e0424922, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306605

RESUMO

This study aimed to develop a rapid and sensitive droplet digital PCR (ddPCR) assay for the specific detection of Klebsiella pneumoniae in fecal samples, and to evaluate its application in the clinic by comparison with real-time PCR assay and conventional microbial culture. Specific primers and a probe targeting the K. pneumoniae hemolysin (khe) gene were designed. Thirteen other pathogens were used to evaluate the specificity of the primers and probe. A recombinant plasmid containing the khe gene was constructed and used to assess the sensitivity, repeatability, and reproducibility of the ddPCR. Clinical fecal samples (n = 103) were collected and tested by the ddPCR, real-time PCR, and conventional microbial culture methods. The detection limit of ddPCR for K. pneumoniae was 1.1 copies/µL, about a 10-fold increase in sensitivity compared with real-time PCR. The ddPCR was negative for the 13 pathogens other than K. pneumoniae, confirming its high specificity. Clinical fecal samples gave a higher rate of positivity in the K. pneumoniae ddPCR assay than in analysis by real-time PCR or conventional culture. ddPCR also showed less inhibition by the inhibitor in fecal sample than real-time PCR. Thus, we established a sensitive and effective ddPCR-based assay method for K. pneumoniae. It could be a useful tool for K. pneumoniae detection in feces and may serve as a reliable method to identify causal pathogens and help guide treatment decisions. IMPORTANCE Klebsiella pneumoniae can cause a range of illnesses and has a high colonization rate in the human gut, making it crucial to develop an efficient method for detecting K. pneumoniae in fecal samples.


Assuntos
Klebsiella pneumoniae , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Klebsiella pneumoniae/genética , Reprodutibilidade dos Testes , Fezes
7.
Microbiol Spectr ; 11(4): e0003123, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338347

RESUMO

High-alcohol-producing K. pneumoniae (HiAlc Kpn) causes nonalcoholic fatty liver disease (NAFLD) by producing excess endogenous alcohol in the gut of patients with NAFLD, using glucose as the main carbon source. The role of glucose in the response of HiAlc Kpn to environmental stresses such as antibiotics remains unclear. In this study, we found that glucose could enhance the resistance of HiAlc Kpn to polymyxins. First, glucose inhibited the expression of crp in HiAlc Kpn and promoted the increase of capsular polysaccharide (CPS), which promoted the drug resistance of HiAlc Kpn. Second, glucose maintained high ATP levels in HiAlc Kpn cells under the pressure of polymyxins, enhancing the resistance of the cells to the killing effect of antibiotics. Notably, the inhibition of CPS formation and the decrease of intracellular ATP levels could both effectively reverse glucose-induced polymyxins resistance. Our work demonstrated the mechanism by which glucose induces polymyxins resistance in HiAlc Kpn, thereby laying the foundation for developing effective treatments for NAFLD caused by HiAlc Kpn. IMPORTANCE HiAlc Kpn can use glucose to produce excess endogenous alcohol for promoting the development of NAFLD. Polymyxins are the last line of antibiotics and are commonly used to treat infections caused by carbapenem-resistant K. pneumoniae. In this study, we found that glucose increased bacterial resistance to polymyxins via increasing CPS and maintaining intracellular ATP; this increases the risk of failure to treat NAFLD caused by multidrug-resistant HiAlc Kpn infection. Further research revealed the important roles of glucose and the global regulator, CRP, in bacterial resistance and found that inhibiting CPS formation and decreasing intracellular ATP levels could effectively reverse glucose-induced polymyxins resistance. Our work reveals that glucose and the regulatory factor CRP can affect the resistance of bacteria to polymyxins, laying a foundation for the treatment of infections caused by multidrug-resistant bacteria.


Assuntos
Infecções por Klebsiella , Hepatopatia Gordurosa não Alcoólica , Humanos , Polimixinas/farmacologia , Polimixinas/metabolismo , Klebsiella pneumoniae , Glucose/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Etanol/metabolismo , Polissacarídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
8.
Nat Commun ; 14(1): 3215, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270557

RESUMO

Our previous studies have shown that high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the intestinal microbiome could be one of the causes of non-alcoholic fatty liver disease (NAFLD). Considering antimicrobial resistance of K. pneumoniae and dysbacteriosis caused by antibiotics, phage therapy might have potential in treatment of HiAlc Kpn-induced NAFLD, because of the specificity targeting the bacteria. Here, we clarified the effectiveness of phage therapy in male mice with HiAlc Kpn-induced steatohepatitis. Comprehensive investigations including transcriptomes and metabolomes revealed that treatment with HiAlc Kpn-specific phage was able to alleviate steatohepatitis caused by HiAlc Kpn, including hepatic dysfunction and expression of cytokines and lipogenic genes. In contrast, such treatment did not cause significantly pathological changes, either in functions of liver and kidney, or in components of gut microbiota. In addition to reducing alcohol attack, phage therapy also regulated inflammation, and lipid and carbohydrate metabolism. Our data suggest that phage therapy targeting gut microbiota is an alternative to antibiotics, with potential efficacy and safety, at least in HiAlc Kpn-caused NAFLD.


Assuntos
Bacteriófagos , Microbiota , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Klebsiella pneumoniae/genética , Etanol/metabolismo , Fígado/metabolismo , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo
9.
Microbiol Spectr ; 11(3): e0532322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022192

RESUMO

It has been known that high alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is one of causative agents of nonalcoholic fatty liver disease (NAFLD). However, how HiAlc Kpn promotes liver injury remains unclear. Recent findings suggest that DNA methylation might associate with the pathogenesis of NAFLD. Herein, the role of DNA methylation in HiAlc Kpn-induced liver injury was investigated. Murine models of NAFLD were established in C57BL/6N wild-type mice by gavaging HiAlc Kpn for 8 weeks. The liver injury was assessed based on the liver histopathology and biochemical indicators. In addition, DNA methylation in hepatic tissue was assessed by using dot bolt of 5-mC. RNA sequencing analysis and whole-genome bisulfite sequencing (WGBS) analysis were also performed. HiAlc Kpn significantly increased the activity of aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TGs), and glutathione (GSH), while hypomethylation was associated with liver injury in the experimental mice induced by HiAlc Kpn. The GO and KEGG pathway enrichment analysis of the transcriptome revealed that HiAlc Kpn induced fat metabolic disorders and DNA damage. The conjoint analysis of methylome and transcriptome showed that hypomethylation regulated related gene expression in signal pathways of lipid formation and circadian rhythm, including Rorα and Arntl1genes, which may be the dominant cause of NAFLD induced by HiAlc Kpn. Data suggest that DNA hypomethylation might play an important role in liver injury of NAFLD induced by HiAlc Kpn. Which possibly provides a new sight for understanding the mechanisms of NAFLD and selecting the potential therapeutic targets. IMPORTANCE High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) is one of causative agents of nonalcoholic fatty liver disease (NAFLD) and could induce liver damage. DNA methylation, as a common epigenetic form following contact with an etiologic agent and pathogenesis, can affect chromosome stability and transcription. We conjointly analyzed DNA methylation and transcriptome levels in the established murine models to explore the potential mechanisms for further understanding the role of DNA methylation in the liver damage of HiAlc Kpn-induced NAFLD. The analysis of the DNA methylation landscape contributes to our understanding of the entire disease process, which might be crucial in developing treatment strategies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Klebsiella pneumoniae/genética , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Perfilação da Expressão Gênica , Metilação de DNA
10.
EBioMedicine ; 91: 104560, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060744

RESUMO

BACKGROUND: Patients with auto-brewery syndrome (ABS) become inebriated after the ingestion of an alcohol-free, high-carbohydrate diet. Our previous work has shown that high-alcohol-producing (HiAlc) Klebsiella pneumoniae can generate excessive endogenous ethanol and cause non-alcoholic fatty liver disease (NAFLD). Therefore, it is reasonable to speculate that such bacteria might play an important role in the pathogenesis of ABS. METHODS: The characteristics and metabolites of the intestinal flora from a clinical cohort of patients with ABS were analysed during different stages of disease and compared to a group of healthy controls. An in vitro culture system of relevant samples was used for screening drug sensitivity and ABS-inducing factors. Rabbit intestinal and murine models were established to verify if the isolated strains could induce ABS in vivo. FINDINGS: We observed intestinal dysbiosis with decreased abundance of Firmicutes and increased of Proteobacteria in patients with ABS compared with healthy controls. The abundance of the genus Klebsiella in Enterobacteriaceae was strongly associated with fluctuations of patient's blood alcohol concentration. We isolated three species of HiAlc Klebsiella from ABS patients, which were able to induce ABS in mice. Monosaccharide content was identified as a potential food-related inducing factor for alcohol production. Treatments with antibiotics, a complex probiotic preparation and a low-carbohydrate diet not only alleviated ABS, but also erased ABS relapse during the follow-up observation of one of the patients. INTERPRETATION: Excessive endogenous alcohol produced by HiAlc Klebsiella species was an underlying cause of bacterial ABS. Combined prescription of appropriate antibiotics, complex probiotic preparation and a controlled diet could be sufficient for treatment of bacteria-caused ABS. FUNDING: The funders are listed in the acknowledgement.


Assuntos
Etanol , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Coelhos , Etanol/efeitos adversos , Etanol/metabolismo , Klebsiella , Concentração Alcoólica no Sangue , Estudos de Casos e Controles , Bactérias
11.
Front Cell Infect Microbiol ; 13: 1008783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909721

RESUMO

A recent, unprecedented outbreak of human mpox virus infection has led to cases in non-African nations, and the number of confirmed or suspected cases outside of Africa has exceeded 1,000 within 5 weeks. Mpox may pose a double threat to public health in the context of the ongoing COVID-19 pandemic. It is difficult to distinguish mpox virus infection from other diseases in the early stages, and patients are contagious from the onset of nonspecific symptoms; therefore, it is crucial to develop rapid and specific diagnostic methods. The diagnosis of mpox relies on real-time polymerase chain reaction, a time-consuming method that requires a highly sophisticated thermal cycler, which makes it unsuitable for widespread use in underdeveloped areas, where the outbreak is still severe. In this study, we developed a recombinase-aided amplification (RAA) assay that can detect mpox virus within 5-10 minutes. The conserved regions of the A27L gene and F3L gene were selected as targets, as they amplify well from different mpox virus clades with no cross-reaction from other pathogens. The sensitivity of this RAA assay is 10 copies/reaction for the A27L gene and 102 copies/reaction for the F3L gene. When applied to simulated clinical samples, both targets showed 100% specificity, and the detection limits were consistent with the sensitivity results. Moreover, through clinical blinded sample detection, RAA exhibits the same detection power as RT-PCR. In summary, the RAA mpox assay described here exhibits rapid detection, high sensitivity and specificity, and low operational difficulty, making it suitable for mpox virus detection in less developed countries and regions.


Assuntos
COVID-19 , Humanos , Sensibilidade e Especificidade , Vírus da Varíola dos Macacos , Recombinases , Pandemias
12.
Front Microbiol ; 14: 1106340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910210

RESUMO

Staphylococcus aureus is an opportunistic pathogen that shows a unique ability to quickly respond to a variety of antibiotics. The Crp/Fnr family transcriptional regulator ArcR controls expression of arginine deiminase pathway genes arcABDC, which enable the utilization of arginine as an energy source for cell growth under anaerobic conditions. However, ArcR shares low overall similarity with other Crp/Fnr family proteins, suggesting that they differ in the response to environmental stress. In this study, MIC and survival assays were performed to determine the role of ArcR in antibiotic resistance and tolerance. The results showed that deletion of arcR reduced tolerance of S.aureus to fluoroquinolone antibiotics, mainly through a defect in the response to oxidative stress. In ΔarcR mutant, the expression of the major catalase gene katA was downregulated, and katA overexpression restored bacterial resistance to oxidative stress and antibiotics. We showed that ArcR directly regulated katA transcription by binding to the promoter region of katA. Therefore, our results revealed the contribution of ArcR in bacterial tolerance to oxidative stress and subsequently to fluoroquinolones antibiotics. This study added our understanding on the role of Crp/Fnr family in bacterial susceptibility to antibiotics.

13.
Microbiol Spectr ; : e0398422, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912637

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKp) is a major human pathogen associated with liver abscess, pneumonia, meningitis, and endophthalmitis. It is challenging to differentiate hvKp from classical Klebsiella pneumoniae (cKp) using conventional methods, necessitating the development of a rapid, sensitive, and convenient assay for hvKp detection. In this study, we constructed a recombinase-aided amplification (RAA) method targeting hvKp genes peg344 and rmpA, and also analyzed the pathogenic characteristics of hvKp. We optimized the reaction temperature and system, and evaluated its sensitivity, specificity, and clinical application. The primer and probe sets peg344-set1 and rmpA-set2 delivered significant fluorescent signals at 39°C with the shortest gene amplification times (sensitivity: 20 copies/reaction). This RAA assay showed no cross-reactivity with 15 other common pathogenic bacteria. Its applicability was confirmed by the evaluation of 208 clinical specimens, of which 45 were confirmed to be hvKp. The sensitivity and specificity of the RAA assay were both 100% compared with real-time PCR as the reference standard. To verify the assay, we also assessed the diversity of molecular characteristics among the hvKp isolates and identified serotype K1 and sequence type ST23 as the dominant clone. Virulence factors iroN and iutA were highly associated with virulence level. In conclusion, our novel RAA assay is a powerful tool for early diagnosis and epidemiological surveillance of hvKp. IMPORTANCEKlebsiella pneumoniae is the most common opportunistic bacterial species and a major threat to public health. Since the 1990s, hvKp has received increasing attention from public health officials and infectious disease specialists. Hypervirulent strains differ from classical strains in terms of phenotypic features and clinical outcomes. It is hard to identify hvKp from cKp using the conventional methods including colony morphology analysis, serum killing assays, mouse lethality assays, string tests, and real-time PCR. In this study, we established a rapid, sensitive and convenient recombinase-aided amplification assay for hvKp detection targeting virulence genes peg344 and rmpA. Our RAA assay provides an important tool for the rapid diagnosis of infectious diseases caused by hvKp, particularly in primary laboratories.

14.
Microbiol Spectr ; 10(5): e0271422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154444

RESUMO

Monkeypox virus (MPXV) is a human pathogenic virus that belongs to the genus Orthopoxvirus. In 2022, MPXV caused an unprecedented number of infections in many countries. As it is difficult to distinguish MPXV from other pathogens by its symptoms in the early stage of infection, a rapid and reliable assay for MPXV detection is needed. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay for the specific detection of MPXV and evaluated its application in simulated clinical samples. The A27L-1 and F3L-1 primer sets were identified as the optimal primers, and 63°C was the most appropriate reaction temperature for sequence amplification. The detection limits of the LAMP assay using primer sets A27L-1 and F3L-1 were both 20 copies/reaction mixture, which were >100-fold higher in terms of sensitivity, compared with conventional PCR. The LAMP assay findings were negative for all 21 non-MPXV pathogens, confirming the high specificity of our assay. All three types of simulated clinical samples were clearly identified by our LAMP assay, and the detection limits were consistent with the sensitivity results, indicating efficient clinical sample identification. Our rapid and reliable MPXV LAMP assay could be useful for MPXV detection and on-site diagnosis, especially in primary hospitals and rural areas. IMPORTANCE MPXV outbreaks rapidly grew in the first half of 2022, and this virus has been recognized as an increasing public health threat, particularly in the context of the COVID-19 pandemic. Thus, developing reliable and fast detection methods for MPXV is necessary.


Assuntos
COVID-19 , Humanos , Vírus da Varíola dos Macacos/genética , Pandemias , Sensibilidade e Especificidade , /epidemiologia
15.
Microbiol Spectr ; 10(5): e0235822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36165773

RESUMO

Pneumonia caused by multidrug-resistant (MDR) Klebsiella pneumoniae of sequence types ST11 and ST383 have highlighted the necessity for new therapies against these prevalent pathogens. Bacteriophages (phages) may be used as alternatives or complements to antibiotics for treating MDR bacteria because they show potential efficacy in mouse models and even individual clinical cases, and they also cause fewer side effects, such as microbiota-imbalance-induced diseases. In the present study, we screened two phages, pKp11 and pKp383, that targeted ST11 and ST383 MDR K. pneumoniae isolates collected from patients with pneumonia, and they exhibited a broad host range, high lytic activity, and high environmental adaptability. Both phages pKp11 and pKp383 provided an effective treatment for the early stage of pneumonia in a murine infection model without promoting obvious side effects, and cocktails consisting of the two phages were more effective for reducing bacterial loads, inflammation, and pathogenic injuries. Our findings support the application of phages as new medications for refractory ST11 and ST383 K. pneumoniae infections and emphasize the potential of enhancing phage therapy modalities through phage screening. These data provided important resources for assessing and optimizing phage therapies for MDR ST11 and ST383 infection treatment. However, substantial amounts of further work are needed before phage therapy can be translated to human therapeutics. IMPORTANCE K. pneumoniae is recognized as the most common pathogen of hospital- and community-acquired pneumonia across the world. The strains of ST11 and ST383 are frequently reported in patients with pneumonia. However, the efficacy of antibiotics toward K. pneumoniae is decreasing dramatically. As a new approach to combat MDR bacteria, phages have exhibited positive clinical effects and efficacy as synergetic or alternative strategies to antibiotics. Thus, we screened two phages that targeted ST11 and ST383 MDR K. pneumoniae, and they exhibited a broad host range, high lytic activity, and high environmental adaptability. Both phages provided an effective treatment for the early stage of pneumonia in mice, and cocktails consisting of the two phages were more effective in reducing bacterial loads, inflammation, and pathogenic injuries. Although these data suggest that phages are effective alternatives or complements to antibiotics, more research is needed before they can be translated into therapeutics for humans.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Pneumonia , Humanos , Camundongos , Animais , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Pneumonia/terapia , Pneumonia/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inflamação
16.
Front Cell Infect Microbiol ; 12: 984140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132989

RESUMO

The Burkholderia cepacia complex (BCC) is a group of opportunistic pathogens, including Burkholderia cepacia, Burkholderia multivorans, Burkholderia vietnamiensis and Burkholderia ambifaria, which can cause severe respiratory tract infections and lead to high mortality rates among humans. The early diagnosis and effective treatment of BCC infection are therefore crucial. In this study, a novel and rapid recombinase-aided amplification (RAA) assay targeting the 16S rRNA gene was developed for BCC detection. The protocol for this RAA assay could be completed in 10 min at 39°C, with a sensitivity of 10 copies per reaction and no cross-reactivity with other pathogens. To characterize the effectiveness of the RAA assay, we further collected 269 clinical samples from patients with bacterial pneumonia. The sensitivity and specificity of the RAA assay were 100% and 98.5%, respectively. Seven BCC-infected patients were detected using the RAA assay, and three BCC strains were isolated from the 269 clinical samples. Our data showed that the prevalence of BCC infection was 2.60%, which is higher than the 1.40% reported in previous studies, suggesting that high sensitivity is vital to BCC detection. We also screened a patient with B. vietnamiensis infection using the RAA assay in clinic, allowing for appropriate treatment to be initiated rapidly. Together, these data indicate that the RAA assay targeting the 16S rRNA gene can be applied for the early and rapid detection of BCC pathogens in patients with an uncharacterized infection who are immunocompromised or have underlying diseases, thereby providing guidance for effective treatment.


Assuntos
Infecções por Burkholderia , Complexo Burkholderia cepacia , Fibrose Cística , Infecções por Burkholderia/diagnóstico , Complexo Burkholderia cepacia/genética , Fibrose Cística/microbiologia , Genes de RNAr , Humanos , RNA Ribossômico 16S/genética , Recombinases
17.
Microbiol Spectr ; 10(2): e0264621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35352958

RESUMO

While Klebsiella pneumoniae is a common cause of nosocomial and community-acquired infections, including pneumonia and pyogenic liver abscess, little is known about the population structure of this bacterium. In this study, we investigated the prevalence and molecular characteristics of K. pneumoniae isolates from carriers, pyogenic liver abscess patients, and pneumonia patients, and genomic and phenotypic assays were used to determine the differences among the isolates. A total of 232 K. pneumoniae isolates were subtyped into 74 sequence types (STs). The isolates from different sources had their own STs, and the predominant subtypes in liver abscess and pneumonia patients were ST23 and ST11, respectively. Pangenome analysis also distinguished three phylogroups that were consistent with the isolate sources. The isolates collected from liver abscess patients carried significantly more virulence factors, and those from pneumonia patients harbored significantly more resistance genes and replicons. Almost all isolate STs (93/97 [95.88%]) from liver abscesses strongly correlated with the virulence factor salmochelin, while most pneumonia isolate STs (52/53 [98.11%]) from pneumonia did not correlate with salmochelin. The isolates collected from liver abscesses showed higher virulence in the cytotoxicity and mouse models. These data provide genomic support for the proposal that isolates collected from carriers, liver abscess patients, and pneumonia patients have distinct genomic features. Isolates from the different sources are largely nonoverlapping, suggesting that different patients may be infected via different sources. Further studies on the pathogenic mechanisms of salmochelin and other virulence factors will be required. IMPORTANCE While Klebsiella pneumoniae is a common cause of nosocomial and community-acquired infections, including pneumonia and pyogenic liver abscess, little is known about the population structure of this bacterium. We collected 232 isolates from carriers, pyogenic liver abscess patients, and pneumonia patients, and the isolates from different sources had their own sequence types. Pangenome analysis also distinguished three phylogroups that were consistent with the isolate sources. The isolates collected from liver abscess patients carried significantly more virulence factors, and those from pneumonia patients harbored significantly more resistance genes and replicons. Besides, there was a strong link between salmochelin and liver abscess. The isolates collected from liver abscesses also showed higher virulence in the cytotoxicity and mouse models. Isolates collected from different sources have distinct genomic features, suggesting that different patients may be infected via different sources.


Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Infecções por Klebsiella , Abscesso Hepático Piogênico , Pneumonia , Animais , Variação Genética , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Abscesso Hepático Piogênico/epidemiologia , Abscesso Hepático Piogênico/microbiologia , Camundongos , Fatores de Virulência/genética
18.
Front Microbiol ; 12: 816997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111144

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is a common major human pathogen associated with community-acquired pneumonia, septicemia, meningitis, and otitis media. It is difficult to isolate and identify S. pneumoniae form clinical samples. To evaluate a novel, rapid, sensitive, and specific loop-mediated isothermal amplification (LAMP) assay to detect S. pneumoniae pneumonia in children, we designed specific LAMP primers targeting lytA and psaA genes. We optimized the reaction time and reaction system, and evaluated its sensitivity and specificity of detection using real-time turbidity monitoring and visual observation. We also analyzed the molecular characteristics of the isolates obtained from the positive samples. The primer sets LytA-1 and PsaA-2 amplified the genes in the shortest times, and 63°C was confirmed as the optimum reaction temperature. The detection sensitivity of each reaction was 10 and 100 copies/µL with primer sets LytA-1 and PsaA-2, respectively. This LAMP assay showed no cross-reactivity with other 27 pathogens. To describe the availability of this method, we collected 748 clinical samples from children with pneumonia. Among them, 135 were confirmed to be S. pneumoniae positive by LAMP. The sensitivity was 100% (95% CI 96.4-100%), specificity 99.0% (95% CI 97.8-99.6%). Including them, 50 were co-infected with Mycoplasma pneumoniae. This LAMP assay detected S. pneumoniae in 1 h and the results can be identified with visual naked eyes. Thus, it will be a powerful tool for S. pneumoniae early diagnosis and effective antibiotic therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...